Необходимо зарегистрироваться, чтобы получить доступ к полным текстам статей и выпусков журналов!
- Название статьи
- Глубокие нейронные сети в задачах идентификации и верификации лиц
- Авторы
- Панфилова Ирина Евгеньевна panfilova_2015@bk.ru, аспирант, инженер, ФГБОУ ВО «Самарский государственный технический университет», г. Самара, Россия
- В разделе
- ТЕХНИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ. Управление доступом
- Ключевые слова
- распознавание лиц / глубокое обучение / сверточные нейронные сети / zero-shot обучение / функции потерь
- Год
- 2024 номер журнала 2 Страницы 33 - 41
- Индекс УДК
- 004.93'1
- Код EDN
- INKXHV
- Код DOI
- 10.52190/2073-2600_2024_2_33
- Финансирование
- Тип статьи
- Научная статья
- Аннотация
- Проведен всесторонний аналитический обзор технологий глубокого обучения для задач идентификации и верификации пользователей по лицу, включая архитектуры нейронных сетей, алгоритмы их обучения, а также метрики оценки эффективности готовых решений на крупномасштабных наборах данных. Проведенный анализ показал, что основные усилия современных исследований в области распознавания лиц направлены на разработку новых математических методов обучения уже существующих архитектур нейронных сетей.
- Полный текст статьи
- Для прочтения полного текста необходимо купить статью
- Список цитируемой литературы
-
Ahonen T., Hadid A., Pietikäinen M. Face recognition with local binary patterns // Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part I 8. Springer Berlin Heidelberg, 2004. Р. 469-481.
Karaaba M. et al. Robust face recognition by computing distances from multiple histograms of oriented gradients // 2015 IEEE Symposium Series on Computational Intelligence. IEEE, 2015. Р. 203-209.
Lugt A. V. Signal detection by complex spatial filtering // IEEE Transactions on information theory. 1964. V. 10. № 2. Р. 139-145.
Lenc L., Král P. Automatic face recognition system based on the SIFT features // Computers & Electrical Engineering. 2015. V. 46. Р. 256-272.
Du G., Su F., Cai A. Face recognition using SURF features // MIPPR 2009: Pattern recognition and computer vision. SPIE. 2009. V. 7496. Р. 593-599.
Calonder M. et al. BRIEF: Computing a local binary descriptor very fast // IEEE transactions on pattern analysis and machine intelligence. 2011. V. 34. № 7. Р. 1281-1298.
Işık Ş. A comparative evaluation of well-known feature detectors and descriptors // International Journal of Applied Mathematics Electronics and Computers. 2014. V. 3. № 1. Р. 1-6.
Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks // Advances in neural information processing systems. 2012. V. 25.
Taigman Y., Yang M., Ranzato M., Wolf L. Deepface: Closing the gap to human-level performance in face verification // Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. Р. 1701-1708.
Huang G. B., Ramesh M., Berg T., Learned-Milleret E. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments // Workshop on faces in'Real-Life'Images: detection, alignment, and recognition. 2008. - 11 р.
Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition // arXiv preprint arXiv:1409.1556. 2014. - 14 р.
Szegedy C., Liu W., Jia Ya. et al. Going deeper with convolutions // Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. -12 р.
Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift // International conference on machine learning. 2015. Р. 448-456.
Szegedy C. et al. Rethinking the inception architecture for computer vision // Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. Р. 2818-2826.
Szegedy C. et al. Inception-v4, inception-resnet and the impact of residual connections on learning // Proceedings of the AAAI conference on artificial intelligence. 2017. V. 31. № 1.
He K. et al. Deep residual learning for image recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. Р. 770-778.
Szegedy C. et al. Inception-v4, inception-resnet and the impact of residual connections on learning // Proceedings of the AAAI conference on artificial intelligence. 2017. V. 31. № 1.
Hu J., Shen L., Sun G. Squeeze-and-excitation networks // Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Р. 7132-7141.
Huang G. et al. Densely connected convolutional networks // Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Р. 4700-4708.
George A. et al. Edgeface: Efficient face recognition model for edge devices // arXiv preprint arXiv:2307.01838. 2023.
Iandola F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size // arXiv preprint arXiv:1602.07360. 2016.
Howard A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications // arXiv preprint arXiv:1704.04861. 2017.
Chollet F. Xception: Deep learning with depthwise separable convolutions // Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Р. 1251-1258.
Zhang X. et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices // Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Р. 6848-6856.
Tan M., Le Q. V. Mixconv: Mixed depthwise convolutional kernels // arXiv preprint arXiv:1907.09595. 2019.
Wu B. et al. Shift: A zero flop, zero parameter alternative to spatial convolutions // Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Р. 9127-9135.
Zhang Q. et al. Vargnet: Variable group convolutional neural network for efficient embedded computing // arXiv preprint arXiv:1907.05653. 2019.
Taigman Y. et al. Deepface: Closing the gap to human-level performance in face verification // Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. Р. 1701-1708.
Huang G. B. et al. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments // Workshop on faces in'Real-Life'Images: detection, alignment, and recognition. 2008.
Schroff F., Kalenichenko D., Philbin J. Facenet: A unified embedding for face recognition and clustering // Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. Р. 815-823.
Parkhi O., Vedaldi A., Zisserman A. Deep face recognition // BMVC 2015-Proceedings of the British Machine Vision Conference 2015. - British Machine Vision Association, 2015.
Liu W. et al. Sphereface: Deep hypersphere embedding for face recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Р. 212-220.
Duong C. N. et al. Mobiface: A lightweight deep learning face recognition on mobile devices // 2019 IEEE 10th international conference on biometrics theory, applications and systems (BTAS). - IEEE, 2019. Р. 1-6.
Schroff F., Kalenichenko D., Philbin J. Facenet: A unified embedding for face recognition and clustering // Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. Р. 815-823.
Weinberger K. Q., Saul L. K. Distance metric learning for large margin nearest neighbor classification // Journal of machine learning research. 2009. V. 10. № 2.
Sun Y. et al. Deep learning face representation by joint identification-verification // Advances in neural information processing systems. 2014. V. 27.
Sun Y., Wang X., Tang X. Sparsifying neural network connections for face recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. Р. 4856-4864.
Sun Y. et al. Deep learning face representation by joint identification-verification // Advances in neural information processing systems. 2014. V. 27.
Sankaranarayanan S. et al. Triplet probabilistic embedding for face verification and clustering // 2016 IEEE 8th international conference on biometrics theory, applications and systems (BTAS). - IEEE, 2016. Р. 1-8.
Sankaranarayanan S., Alavi A., Chellappa R. Triplet similarity embedding for face verification // arXiv preprint arXiv:1602.03418. 2016.
Crosswhite N. et al. Template adaptation for face verification and identification // Image and Vision Computing. 2018. V. 79. Р. 35-48.
Wu Y. et al. Deep convolutional neural network with independent softmax for large scale face recognition // Proceedings of the 24th ACM international conference on Multimedia. 2016. Р. 1063-1067.
Wen Y. et al. A discriminative feature learning approach for deep face recognition // Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VII 14. - Springer International Publishing, 2016. Р. 499-515.
Zhang X. et al. Range loss for deep face recognition with long-tailed training data // Proceedings of the IEEE international conference on computer vision. 2017. Р. 5409-5418.
Wu Y. et al. Deep face recognition with center invariant loss // Proceedings of the on Thematic Workshops of ACM Multimedia 2017. 2017. Р. 408-414.
Qi C., Su F. Contrastive-center loss for deep neural networks // 2017 IEEE international conference on image processing (ICIP). - IEEE, 2017. Р. 2851-2855.
Liu W. et al. Large-margin softmax loss for convolutional neural networks // arXiv preprint arXiv:1612.02295. 2016.
Wang F. et al. Additive margin softmax for face verification // IEEE Signal Processing Letters. 2018. V. 25. № 7. Р. 926-930.
Liu W. et al. Sphereface: Deep hypersphere embedding for face recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. Р. 212-220.
Wang H. et al. Cosface: Large margin cosine loss for deep face recognition // Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. Р. 5265-5274.
Deng J. et al. Arcface: Additive angular margin loss for deep face recognition // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. Р. 4690-4699.
Liu B. et al. Fair loss: Margin-aware reinforcement learning for deep face recognition // Proceedings of the IEEE/CVF international conference on computer vision. 2019. Р. 10052-10061.
Liu H. et al. Adaptiveface: Adaptive margin and sampling for face recognition // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. Р. 11947-11956.
Ranjan R., Castillo C. D., Chellappa R. L2-constrained softmax loss for discriminative face verification // arXiv preprint arXiv:1703.09507. 2017.
Liu Y., Li H., Wang X. Rethinking feature discrimination and polymerization for large-scale recognition // arXiv preprint arXiv:1710.00870. 2017.
Moghaddam B., Jebara T., Pentland A. Bayesian face recognition // Pattern recognition. 2000. V. 33. № 11. Р. 1771-1782.
Chen D. et al. Bayesian face revisited: A joint formulation // Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III 12. - Springer Berlin Heidelberg, 2012. Р. 566-579.
Taskiran M., Kahraman N., Erdem C. E. Face recognition: Past, present and future (a review) // Digital Signal Processing. 2020. V. 106. Р. 102809.
Yang M. et al. Joint and collaborative representation with local adaptive convolution feature for face recognition with single sample per person // Pattern recognition. 2017. V. 66. Р. 117-128.
Wang M., Deng W. Deep visual domain adaptation: A survey // Neurocomputing. 2018. V. 312. Р. 135-153.
Crosswhite N. et al. Template adaptation for face verification and identification // Image and Vision Computing. 2018. V. 79. Р. 35-48.
Wang D., Otto C., Jain A. K. Face search at scale // IEEE transactions on pattern analysis and machine intelligence. 2016. V. 39. № 6. Р. 1122-1136.
- Купить
- 500.00 руб