To obtain access to full text of journal and articles you must register!
- Article name
- EBERS-MOLL SIMULATION MODEL PARAMETERS IDENTIFICATION OF A BIPOLAR JUNCTION TRANSISTOR USING ARTIFICIAL NEURAL NETWORK
- Authors
- Loginov V. A., , loginovva@mpei.ru, National Research University "Moscow Power Engineering Institute", Moscow, Russia
Kliuchansky A. A., , KliuchanskyAA@mpei.ru, National Research University "Moscow Power Engineering Institute", Moscow, Russia
- Keywords
- modelling / simulation model / identification / BJT / Ebers-Moll model / Kolmogorov Arnold network / KAN architecture
- Year
- 2025 Issue 1 Pages 3 - 7
- Code EDN
- NUAEPM
- Code DOI
- 10.52190/2073-2597_2025_1_3
- Abstract
- A brief overview of the main simulation models used for transistor modelling is given. The method and results of using the KAN artificial neural network to identify the Ebers-Moll simulation model parameters of a bipolar transistor are described.
- Text
- BUY for read the full text of article
- Buy
- 500.00 rub